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Bose-Einstein Condensation in an Exactly Soluble 
System of Interacting Particles 
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The model investigated recently by Tdth, a lattice gas of bosons with hard-core 
repulsion on a complete graph, is studied here by diagonalizing the 
Hamiltonian. The thermodynamic free energy per site is shown to be f where 

~f =flp2+ Min { g x ( 1 - x ) + x l o g x + ( 1 - x ) l o g ( 1 - x ) }  
0 ~< x -.<.< Min(p ,  1 - - p )  

where fl is the inverse temperature and p ~ [0, 1] is the number of particles 
per site. This formula is equivalent to the one obtained by Tdth. There is a 
phase transition at fl = B*(P) = (1 - 2p) -~ log[(1 p)/p]. If fl ~> fl*(p), Bose- 
Einstein condensation is shown to be present, the condensate density (number 
of condensed particles per site) in the thermodynamic Iimit being 
[ p - x * ] [ 1 - p - x * ] ,  where x* is the minimizing value of x, satisfying 
g*(x*) =/~. 

KEY WORDS: Bose-Einstein condensation; quantum lattice gas; XY model; 
mean-field theories. 

1. I N T R O D U C T I O N  

A recent  pape r  by  T 6 t h  (15) shows tha t  the t h e r m o d y n a m i c  func t ions  for a 
lat t ice gas of b o s o n s  o n  a comple t e  graph ,  the on ly  i n t e r ac t i on  be ing  a n  
"on-s i te"  ha rd -co re  repu ls ion ,  can  be ca lcu la ted  exactly. His  m e t h o d  uses 

resul ts  f rom l a rge -dev ia t ion  theory  appl ied  to the r a n d o m  walk  represen ta -  
t ion  of the  p a r t i t i o n  func t ion .  (This  r ep re sen t a t i on  is the discrete a n a l o g u e  
of the  F e y n m a n - K a c  fo rmula . )  F r o m  a s ta t is t ical  mechan ic s  po in t s  of view, 
his mos t  in te res t ing  resul t  is tha t  the Bose system shows a phase  t r ans i t ion ,  
whereas  the c o r r e s p o n d i n g  F e r m i  system does not .  I t  is n a t u r a l  to in t e rp re t  
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this phase transition as the analogue of the condensation, first noted by 
Einstein, (3) which is exhibited by an ideal Bose gas in a continuous space 
of three or more dimensions. 

Bose-Einstein condensation in an interacting system is of interest to 
the physicist because of its importance in the theory of liquid helium-4. 
Experiment shows (13) that liquid helium-4 has a Bose condensate--that 
is, (12) a finite fraction of the particles all in the same one-particle quantum 
state--and the hypothesis that such a condensate is present provides the 
microscopic basis for our current theoretical understanding of superfluidity 
in bulk liquid helium-4. One is therefore naturally led to ask whether the 
system studied by T6th has such a condensate. The purpose of the present 
paper is to show that it does and, moreover, to give an explicit formula for 
the condensate density. At the same time, we also exhibit a new method for 
studying this system; instead of T6th's random walk representation, we 
calculate the eigenvalues and eigenfunctions of the Hamiltonian operator. 
This leads to a simpler formula for the thermodynamic functions, which 
turn out to be almost identical with those of the Bragg-Williams theory. 

The main results of this paper can be summarized in the following 
theorems. 

T h e o r e m  1. The thermodynamic free energy per site f at inverse 
temperature/3 is given (in units where the energy levels of the one-particle 
system are 0 and 1) by 

flf=/~p2 + Min {fix(1-x)+xlogx+(1-x)log(1-x)} (1) 
0 ~ x ~< Min(p,  1 - - p )  

=[fip+plogp+(l-p)log(1-p) if /?~]~*(p) (2) 

[fip2+flp*(1-p*)+p*logp*+(1-p*)log(1-p*) if /~>/~*(p) (3) 

where p is the number of particles per site, and/~*(p) is defined by 

1 1 - p  2a rc t anh (1 -2p )  1 
/~*(P)=l-2------fi l~ p - 1 - 2 p  if p:r  ( O < p < l )  (4) 

and by continuity if p = 1/2 [i.e.,/~*(1/2) = 2] (see Fig. 1), and where in the 
case/~ >/~*(p) we denote by p*(/~) the minimizing value of x, which is the 
smaller of the two values of p* satisfying 

p*(p*)=/~ (s) 

The proof of this theorem is given in Section 7. 

Corollary. There is a phase transition when/~ =/3*(p). 
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Fig. 1. Phase diagram of the system considered. Bose-Einstein condensation is present for 
points above the phase transition curve, but  not  for those below it. The equation of the curve 
is fi = fl*(p), i.e., fl = 2 [ a r c t a n h ( 1 -  2 p ) ] / ( 1 -  2p). The left-hand half of the curve can also be 
interpreted as a graph of the equation p = p*(fl), turned on its side. 

T h e o r e m  2. The condensate density Pc (number of condensed 
particles per site) is given in the thermodynamic limit by 

0 if fl<.fi*(p) 
Pc= [p-p*( f l ) ] [1 -p -p*( f l ) ]  if fi>/fl*(p) 

(6) 

The proof of this theorem is given in Section 9. 

Corollary. Bose-Einstein condensation, that is, a nonvanishing 
value of Pc, is present if and only if fi > fi*(p). The critical exponent for p~. 
is 1, i.e., Pc oc ( f i - 2 ) [ 1  +o(1) ]  as fl N 2 at p =  1/2. 

Proof of Corollary. An expansion of Eq.(4) gives fl*(p)= 
2 2 + ~ ( 1 - 2 p ) 2 +  --- and hence, by (5), 1 - 2 p * =  [ 3 ( f l - 2 ) ] m +  . . . .  Sub- 

stituting in (6) and setting p = 1/2, we obtain (for 3>~2) pc= 3 ( / 3 - 2 ) +  
O(fl-  2) 2, as required. 

2. DEFINITION OF THE SYSTEM 

For a general quantum lattice gas on a lattice A the Hamiltonian H 
is defined by 

822/63/3-4-22 
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Htp(xl ,..., Xiv) 

N 

= -  ~ ~ c(xi, y)[~,(xl,...,xi_~, y, xi+l ..... xN)-~p(xl , . . . ,xo)]  
i = 1  y e A  

+ S(xl,..., XN) ~9(Xl ..... XN) (7) 

where x 1 . . . . .  x N are lattice sites, c(x, y) is minus the matrix element of the 
one-particle kinetic energy operator between sites x and y, and U is the 
potential energy function. 

For  a periodic lattice such as the simple cubic, c(x, y) would be 
chosen so as to make the kinetic energy contribution to H for a one- 
particle system equal to the finite-difference approximation to the 
continuous-space kinetic energy operator, giving 

f h2/2ma 2 if x , y  are joined by a bond in A 
c(x, y)= (8) to otherwise 

where 27rh is Planck's constant, m is the mass of a particle, and a is the 
lattice spacing. Here, however, our lattice is a complete graph, on which 
every pair of sites is joined by a bond. We therefore take c(x, y) to be a 
constant, independent of x and y. An appropriate value for this constant 
would be the average of (8) over all sites. This average is of the form 
const- V 1, where V is the number of lattice sites. For  simplicity we shall 
(following Tdth {15)) take the constant to be 1, so that c(x, y ) =  V ~ for all 
x, y; this amounts to taking the unit of energy to be the energy of the 
[ ( V - 1 ) - f o l d  degenerate] excited state of the one-particle system. 

For  the hard-core exclusion interaction we are considering here, the 
potential energy U(xl ..... XN) is 0 if all of xl ..... XN are different and 
otherwise is + oo. Therefore, by (7), we have O(Xl,..., XN)= 0 if X1 ..... XN 
are not all different, and so we may restrict our attention to those states 
where at most one particle occupies each vertex; moreover, because of the 
Bose symmetry, it is not necessary to specify which particle is where, only 
which sites are occupied and which are not. The allowed quantum states of 
the system therefore lie in the vector space ")fiN spanned by a basis set of 
state vectors for each of which the N particles occupy a different N-vertex 
subset of the graph, the remaining V - N  vertices being unoccupied. Such 
a basis vector will be denoted by IX>, where X denotes the set of occupied 
vertices. For  a given N, there are V!/N! ( V - N ) !  such states and hence the 
dimension of ~,Z,~N is V!/N! (V--N)! .  

It will also be useful to consider a larger space ~ ,  which is the direct 
sum of all the Z'~N for N = 0, 1 ..... V. In this space, the number of particles 
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is an operator rather than a fixed number; we shall denote this operator 
by N. The dimension of the space ~ is 

V 
V!/[N! ( V - - N ) ! ]  = 2  v (9) 

N=0 

Any state [ r  can be written as a linear combination of the basis 
vectors. The coefficient of iX) in this linear combination could be denoted 
by O(X), but Dirac's (2) notation (X[~9) is very convenient for our 
purposes; thus we have 

Jr ) =F, IX)(X[~ ) (10) 
x 

where in general the sum goes over all subsets of the graph F, but may be 
restricted to the N-vertex subsets of F if I r  lies in "~N' In particular, we 
find, on choosing 1r ) = ] Y), where Y is any subset of F, that 

( X , Y ) = { ~  if X= Y (11) 
otherwise 

In this notation, the definition (7) of the Hamiltonian, with 
c(x, y ) =  V -1 for all x, y, reads 

(X[H[~/I)'v"-V-I{ N(V-])(XItfI)- 2 ~ ~(X--X) k..)yt~l)} (12) 
x~X y~F--X 

where X - x  means X\{x}.  Setting [ r  where Y is an arbitrary 
subset of F, we obtain 

{~ -- V -1 )  • ( X )  

(X] H r Y ) =  V-' 
if X = Y  
if # ( X ) = # ( Y ) a n d # ( X A  Y ) = 2  

otherwise 
(13) 

where # ( X )  denotes the number of elements in the set X and X • Y 
denotes the set of vertices that are in just one of X and Y. 

3. A F A C T O R I Z A T I O N  OF THE H A M I L T O N I A N  

The basis of our method is a factorization technique. We define an 
operator A whose matrix elements are 

f V -1/2 if X = Y - x f o r s o m e s i t e x i n Y  
(X] A ] Y ) =  ~ 0  if not (14) 
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As we shall see in more detail in Section 9, this operator can be thought of 
as destroying one particle in the single-particle state of lowest energy. Its 
adjoint A + has matrix elements 

(V -1/2 if X=Y-x forsomes i t ex inY  
<Y[ A + I X ) =  ~ 0  if not (15) 

The matrix elements of A +A are given by 

1 
( X I A + A I Y ) = ? ~  ~ ( X - x i Y - y )  

xEX y ~ Y  

(#(X) /V  if X =  Y 
] 

=~I/V if # ( x ) = # ( Y ) a n d  # ( X A  Y)=2  

( 0  otherwise 
(16) 

Combining this formula with (13), we see that 

A+A+H=N (17) 

where N is the number operator, defined by 

<XINIY>-- <Xl Y> #(X) (18) 

In this way we have expressed an operator closely related to the 
Hamiltonian, namely 2V- H, as the product of two adjoint factors A and 
A +. Moreover, we shall see later (Section 9) that the expectation of A +A 
is the expected number of condensed particles, and so (17) shows that the 
expectation of H is precisely equal to the expected number of non- 
condensed particles. This is plausible because the eigenvalues of the one- 
particle Hamiltonian are 0 and 1, and the noncondensed particles are the 
ones with eigenvalue 1. 

4. S O M E  C O M M U T A T I O N  R E L A T I O N S  

The formula for AA + analogous to (16) is 

1 = ~ ~ (XvxlYuy) <X]AA+IY) -Vx~  X y~r-Y 

!v- #(x)]/v if J r=  Y 
= / v  if # ( X ) = # ( Y )  and # ( X A  Y)=2  

otherwise 

(19) 



Bose-Einstein Condensation 767 

From (16), (18), and (19) we deduce the commutation relation 

AA + - A + A = I - 2 V  1~ (20) 

In order to find the eigenvalues and eigenspaces of the Hamiltonian, 
we shall need some more commutation relations. From (15) and (18) we 
have 

NA + - A +_N= A + (21) 

which has the interpretation that A + increases the number of particles 
by 1. We also have, starting from (17), 

HA + - A + H =  (2Q-- A + A ) A  + - A + ( N -  AA + ) 

=(NA + - - A + h ) - - A + ( A A  + - AA +) 

= A  + - A + ( 1  -- 2V-1N) [by (21)and (20)] 

= 2 V - 1 A + N  (22) 

Further, if we define the operator L by 

L = H -  V-I(2V2- h )  = ]Q - V-J(2QZ--N) - -A+A (23) 

[using (17)], then it follows from (21) and (22) that 

LA + - A +L = 0 (24) 

5. T H E  E I G E N S P A C E S  OF THE H A M I L T O N I A N  

Let r be any integer satisfying 

0~<r~<�89 (25) 

and consider the subspace of ~ ,  call it ~ ,  defined by 

~ = { l ~ > : h l ~ ) = r l ~ b >  and A J~b>=0} (26) 

From this definition together with (17) and (23) we see that every state I~b > 
in ~ satisfies 

h [~b) = r J~b>, HIr = r  Ir L l q ~ } = [ r - V  1(r2- r)] 1~> (27) 

For each r satisfying (25), consider the further sequence of subspaces 

~ , ,  = (A+) , .  r ~ ,  m = r , r + l  ..... V - - r  (28) 
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(so that ~Q~=Yr)" It follows from (26) and (27), and the commutation 
relations (21) and (24), that every state I~b) in ~,m satisfies 

N [~b)=m [~b) (29) 

/~ I~ )  = E r -  v-~(r2- r)] I~) (30) 

and hence, by (23), 

H [~b)-- I f -  m - l ( r 2 - - r ) n  t- V-l(m2-m)] LO) (31) 

The subspaces ~r,m are all orthogonal, since they correspond to different 
pairs of eigenvalues for ~- and L. Moreover, by (31), they are all eigen- 
spaces of the Hamiltonian. 

Now we determine the dimensions of these subspaces. The first step is 
to find a lower bound on dim Xrr- The definition (26) says that ~ consists 
of all ]~b > such that 

]~b>= ~ IX><X]q~> (32) 
X :  # ( X )  - r 

and 
(X]A [~b) = 0  for all X c F  (33) 

By (14), the condition (33) is automatically satisfied if r = 0  and may 
otherwise be written 

(Xwxlr  forall Xwith # ( X ) = r - i  (34) 
x ~ F - - X  

It follows from (32) and (34) that the dimension of -Xr is at least equal to 
the number of distinct X c  F with # (X)= r, which is (~), less the number 
of independent linear relations implied by the (rvl) equations (34). The 
number of such relations is at most (rVt) for r>~ 1, and when r = 0  there 
are no equations at all in (34). So we have 

dim X" >~ (rV) - ( r  V1)  = ( rV)[ 1 V - ; +  1] (35) 

where we make the interpretation 

(5)--0 
Since we are requiring r~< IV, Eq. (35) shows that the dimension of ~ is 
certainly positive. We shall find later that it is in fact equal to the right, 
hand side of (35). 
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Now we consider ~ r r ,  m o By the definition (28) we have 

~'~,m+l = { A+ I~b}: Iqt} ~2(;,m} (37) 

SO that 

dim ~;,m+ 1 ~<dim ~ ,m (38) 

But we can also show (proof below) that 

Xr,,~ = {A IO }: 10) e Xr, m+l } ( m = r , . . . , V - r - 1 )  (39) 

so that 

dim ~f~,m ~< dim ~ ,m + 1 (m=r ..... V - r - l )  (40) 

Combining (38) and (40) gives 

dim ~4"~,m + 1 = dim ~ ,  m (m=r,..., V - r - l )  (41) 

so that, by induction 

dim ~r = dim JCr, r = dim S,. (m = r ..... V -  r) (42) 

To prove (39), we use first (37) and afterwards (20) and (17) to see 
that the right-hand side of (39) can be written 

{A I ~'}: 0 ~ ;'f~,m + 1} = {AA + I~b}: E~b} ~ Xr, m} 

= { [ 1 - 2 V - 1 N + ~ ? - H ] t ~ b } : 4 ~ b } e ~ , m }  (43) 

The right-hand side of (43) is equal to 2((~ .... if the operator in square 
brackets does not annihilate r~b}, that is, by (29) and (31), if 

1 - 2 V - l m + m - r + V  l ( r 2 - - r ) - V - l ( m 2 - m ) r  (44) 

The left-hand side of (44) can be written 

v - l (1  + m - r ) ( V - m - r )  (45) 

and is therefore nonzero provided that 

r - l v a m C : V - - r  (46) 

So (43) tells us that the right-hand side of (39) is equal to Jg;~,m for all m 
satisfying (46), and hence that (39) is a true statement. 
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The total dimension of all the orthogonal subspaces ~Qm is 
V r 

Z ~ dim J~rr, m 
r<~ V/2 m = r  

V rain(m, V rn) 

= Z • dim Jlrr [by (42)] 
m = 0  r = 0  

~> Z Z - [by (35)] 
m=0 r=0 r 1 

~ ( V ) ~  ( V ) 2 v  (47) 
m=0 min(m, V-m) m=0 

However, since the dimension of the entire space ~ is 2 v, it follows that 
the direct sum of the subspaces X,.,m is the whole of ~ and hence that the 
two expressions related by ~> are in fact equal, so that (35) and (42) give 

dim Sr.m = r--1 1 V--r+l 

Thus, we have split .~  into eigenspaces of H, with eigenvalues given by 
(31), and dimensions given by (48). 

Using this information about the spectrum of the Hamiltonian, we can 
write an explicit formula for the partition function for an N-particle system 
as the sum of contributions from the subspaces ~,m with m = N: 

Z(N, V) = tr(e -~H) 
min(N, V-- N) 

= ~ exp{-fl[r- v-l(r2-r)+ V I(N2-N)]} 
r - - 0  

x (rV)(1 V - ~ +  1) (49) 

where fl is the inverse temperature, and we have taken the eigenvalues of 
H from (31), their multiplicities from (48), and the allowed values of r from 
(28). The next step is to calculate the thermodynamic free energy from 
(49); this will be done in Section 7, after proving a mathematical lemma. 

6. REPLACING A SERIES BY ITS LARGEST T E R M  

Lemma. Let a, b be real numbers with a<b ,  and let ~ and h be 
continuous functions from [a, b] to N, with q~ having a unique maximum 
at x*, say (so that ~(x) <~b(x*) for all xCx* in [a, b]). Define 

Kv= {r~Z: r/VE [a, b]} (50) 
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and let {r VEE+} and {hv: VeE +} be two bounded sequences of 
functions from Kv to ~, converging uniformly to ~b and h, respectively, in 
the sense that (in the case of ~b) 

lim &v=0 (51) 
V ~ o o  

where, by definition, 

6 v = Max Ir v(r/V) - O(r/V)] (52) 
r ~ K v  

if Kv is nonempty, and C~v= +oe if Kv is empty. Define, for each V~ ~+, 

Then we have: (a) 

and (b) 

Z ( V ) =  ~ exp V~v(r/V) (53) 
r~ Kv 

1 
lim -~log Z(V) = sup ~b(x) (54) 

V ~ o O  x 

V ~ Z ~ - ~ r  ~ exp Vq~v -~ =h(x ) (55) 

Proof of the Lemma. Proof of Part (o). The sum in (53) is bounded 
above by the number of terms times the largest term, so that 

Z(V) <<. [ V(b - a) + 1 ] Max exp Vr v(r/V) 
r ~ K v  

<~ [ V(b - a) + 1 ] Max exp V[r + (~ v] 
r ~ K v  

[by (52)] (56) 

Using (50), (51), and the definition of x*, we find that 

1 
lim sup -- log Z(V) ~< r (57) 

V ~ o O  V 

For a lower bound, let e be any small positive number and define 

J~= {xE [a, b]: Lx-x*l ~<e} (58) 

Provided V> 1/2e, the sum in (53) has at least one term for which r/VeJ~, 
and by (52) the value of this term is at least Minx~z exp V[O(x)-6v]. 
Since all the other terms in the sum are nonnegative we have, using (51), 

lira inf 1 log Z(V) >~ Min ~b(x) (59) 
v ~  oe g x e &  
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This is true for any positive e, and so we can take the limit e ~ 0, obtaining 
(since r is continuous) 

1 
lim i n f =  log Z(V) >~ r 

U~c~? g 
(60) 

Combining (57) and (60) completes the proof of part  (a). 

Proof of Part (b). We want to prove that lira v ~ ~ r/v = 0, where 

1 h r _ r / v :  V r 

Let ~ be any positive number. Then by the continuity of h and the uniform 
convergence of {hv} we can find numbers s and V 0 such that 

]hv(r/g)-h(x*)i  < 

whenever V>  V o and Ir/V-x*b <e.  For an upper bound on ]r/v] we then 
have 

Jr/v] ~<A1 +B1 (62) 
Ao + Bo 

where, for k = 0 and k = 1, we define 

Ak= ~ Ihv(r/V)-h(x*)lk exp VCv(r/V ) (63) 
r: r / V e  Je 

Bk = ~ Ihv(r/V ) - h(x*)[ k exp VOv(r/V) (64) 
r : r / V e  KV\Je  

These definitions imply, for V >  Vo, the following estimates: 

O<~AI <~ ~Ao (65) 

0 ~ BI <<. 2MBo (66) 

where M is the upper bound on the bounded sequence of functions { Ih vl }, 
and 

O ~ B o < ~ [ V ( b - a ) + l ] e x p V  [ sup r + C~v] (67) 
x E [a,b~\J~ 

[which follows from (52) and the fact that there are at most V ( b -  a) + 1 
terms in the series for Bo]. 

We also need an estimate of the ratio Bo/Ao. Consider the interval J1/v 
defined as in (58). At least one element r of the set Kv is such that r/V lies 
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in this interval. Provided V> l/e, we have Jj/vGJ~, so that this value of r 
corresponds to a term of the sum defining Ao; and Ao is bounded below 
by this term, so that [using (52) again] 

Ao~>ex p V[ inf ~b(x)-6v] if V>l/e (68) 
x ~ d l / v  

Combining (67) and (68) gives, for V> I/e, 

Bo/Ao<-..[V(b-a)+l]expV{26v+ sup ~b(x)- inf ~b(x)} 
x e [ a , b  ] \ J ~  X e J l / v  

For sufficiently large V the expression in braces is bounded above by a 
negative constant, because of (51) and the fact that (by the continuity of 
~b and the definitions of x*, J1/v, and J~) 

lira [ inf ~b(x)]=~b(x*)> sup ~b(x) 
V ~ o o  x G J I [ v  x G [ a , b ] \ J F ,  

Thus we obtain 

lim Bo/A o = 0 (69) 
V---~ oo 

Using these estimates in (62), we find that 

lim Iqvl ~< lim 
V ~ o o  

~< lim 
V ~ o o  

=~ 

(A 1/Ao) + ( B1/Bo)( Bo/Ao) 
1 + Bo/Ao 

[~ + 2M(Bo/Ao) ] [by (65) and (66)] 

[by (69)] (70) 

Since this is true for any positive ~, we must have 

lim It/vI = 0 

which, combined with (61), completes the proof of part (b). 

7. T H E  T H E R M O D Y N A M I C  FREE E N E R G Y  

In this section we prove Theorem 1. The thermodynamic free energy 
per site at particle concentration p and inverse temperature fi is defined in 
the usual way as f(p, fl), where 

/~f(p, f l )=  - lim V : logeZ(N,  V) (71) 
N, V ~  oo 
N / V  ~ p 
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with Z(N, V) given by (49). We can apply the lemma, with a = 0, b = 1/2, 

and 

(~v =- V ~ - f [ r -  V - t ( r 2 - r )  

( r)} 
+log  1 V - r +  1 

+ V  l ( N 2 - N ) J + l o g ( V )  

(72) 

~b(x)= lim q}v(x) 
V ~ c o  

= --{tip2 + f x ( 1 - x ) + x l o g x + ( 1 - x ) l o g ( 1 - x ) }  (73) 

provided we can show that (51) holds. For then the main result (1) follows 
at once from (53) and (54). The rest of the theorem then follows by 
standard calculus, the minimizing value of x in (1) being p* for f > f*(p)  
and Min(p, I - p )  for fl<~f*(p). 

To show that (51) holds, we first do the case r =0.  In this case we 
have 

~v(O) - ~(0) = f[p2 _ (N 2 _ N)/V 2] (74) 

which tends to 0 as V ~  oo with N/V-- ,p.  To do the case 1 ~<r~< 1 V, define 
O(n) by 

n! = (n + �89 log n - n + O(n) (n I> 1 ) (75) 

It is shown by Feller (5) that 

0~<0(n)~< 1 (n~>l) (76) 

Putting (75)into (72)and (73), we obtain, for 1 ~<r~< V - 1 ,  

N2 - N )  _ fir 1 V 
= f l ( P '  V'  V-5 + 2-vl~ Jr(  V--- r i ]  

( r )+;[0(v)-0(r)-O(V-r)] + l l o g  1 V - r + l  

(77) 

The first term on the right is independent of r and tends to 0 as V ~  co; 
the second is bounded above by 0 and below by - f / V ;  the third is 
bounded above by 0 and below by its value for r =  V/2, which is 
- (1 /2V)  log(V/4); the fourth is bounded above by 0 and below (since 
r<~ V/2) by its value for r =  V/2, which is - (1 /V) log(1  + 1//2); and the 
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fifth is, because of (76), bounded above by 1IV and below by -2/V. So the 
whole expression has upper and lower bounds independent of r which tend 
to 0 as V ~  or, and (51) is proved. 

8. C O M P A R I S O N  WITH TOTH'S FREE ENERGY F O R M U L A  

Tdth (15) gives a formula for the free energy density which in our 
notation reads as follows: 

~f=/3p+plogp+(1-p)log(1-p)  when /3 ~</3*(p) (78) 

/3f=//p + p log p + (1 - p) log(1 - p) + �89 - 2p)2[/3 - fl*(p)] 

+�89 when /3>/3"(p) (79) 

where E(/3) is the solution of 

y = [(1 - 2p) 2 + 4p(1 - p)E] ~/2 (80) 

with y defined as the unique positive solution of 

l l o g  1 + y = / 3  (81) 
y 1 - y  

The results (2), (3), (78), and (79) were obtained by completely different 
methods, but, as we now show, they are equivalent. Since the formulas (2) 
and (78) for the case/3 ~</3*(p) are identical, only the case/3 >/3*(p) gives 
any trouble. 

To facilitate comparison with (3), we subtract/3p2 from both sides of 
(79) and then express the right-hand side in terms of p and p* only. We 
already have a formula for/3* in terms of p, Eq. (4). For/3, we use (5) and 
(4), obtaining 

1 1 - -p*  
/3 = - -  log - -  (82) 

1 - 2p* p* 

To express E in terms of p, we first compare (81) and (82), obtaining 
[since p * < l / 2  and the solution of (81) for positive y is unique] 
y =  1 - 2 p * ;  hence, by solving (80) for E, we obtain 

p*(1 - p * )  
~-- 1 (83) 

p(1 -p )  

Now we substitute from (4), (82), and (83) into the expression for/3f_/3p2 
given by (79). The resulting formula eventually reduces to 

/3f_ tip2 = _ p , 2  log p* + (1 - p,)2 log(1 - p*) (84) 
1 - 2p* 
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For comparison, consider the expression for f l f _ f i p 2  given by (3). 
Substituting for fl from (82), we again obtain (84), verifying that (79) and 
(3) are equivalent and hence that the two methods give the same free 
energy density for all inverse temperatures ft. 

9. B O S E - E I N S T E I N  C O N D E N S A T I O N  

In this section we prove Theorem 2, which gives the condensate 
density, that is, the expectation of the operator giving the number of 
particles per site that are in the single-particle state for which the 
probability amplitude is the same at each site. This state, which we may 
call the zero state, is the state of lowest energy for the single-particle 
system. 

A convenient way to find the number operator for the zero state is to 
use second quantization. Let ~-~ be the Fock space for bosons on the graph 
F, comprising states with any number of particles on each site, and let bx : 

~ ~- be the boson annihilation operator in ~ ,  annihilating one particle 
at the site x, and satisfying the usual commutation relation 

b x b ;  - b + bx = c~xy (85) 

The operator annihilating one particle in the zero state is then 

B = V -  1/2 E bx 
x 

It satisfies the commutation relation 

(86) 

BB + - B+ B =  1 (87) 

The operator giving the number of particles in the zero state is 

No = B + B  (88) 

an operator whose eigenvalues are nonnegative integers. 
For the system we are considering, all the quantum states lie in ~,~, the 

subspace of ~- for which there is at most one particle on each site. If bx 
acts to the right on a state in ~ ,  the resulting state is again in ~ (with 
one less particle). Let ax be the restriction of bx to ~ ;  then the matrix 
elements of a~ are given by 

10 if X = Y - - x  (89) 
(XI ax I Y) = if not 
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The restriction of B to ~ is then 

V 1/2 y' ax (90) 
x 

an operator in W whose matrix elements [calculated from (89)] turn out 
to be the same as those of A given in (14); the restriction of B to Y: is 
therefore A. 

In a similar way, we can show that the restriction of B+B to H is 
A +A and hence the expectation of ~?0 for any state in Y: is equal to the 
expectation of A ~A is that state. It follows that the expectation of 3?0 in 
the canonical ensemble is given by 

<No > - tr(A + Ae-8") 
tr(e_/3,~ ) (91) 

[On the other hand, it is not true that the restriction of BB + to Yf is AA +; 
this is because B § acting on a state in Yf can produce a state which is not 
in Yf, and is the reason why the commutation relations (20) and (87) have 
different right-hand sides.] 

To calculate the right-hand side of (91), we use the decomposition of 
Yf into subspaces ~,,~ explained in Section 5. Using first (17) and then 
(29) and (31), we see that ~ ,m is an eigenspace of A +A with eigenvalue 

m-- [r-- V l ( r2 - r )+  v - l ( m 2 - m ) ]  

The dimensions of these subspaces are given in (48). Using this information 
in (91), then dividing both sides by V and taking the thermodynamic limit, 
we obtain the condensate density Pc: 

Pc = lim ( No > 
N, V-r ~ V 
N/V~ p 

( fmin(N' V- N) (N- -  r)( V--  N - -  I" V 2 1)  
= lira 

\ ~ -  r 0 

F 

V - r + l  

f 
min(N, V-- N) r~0 e x p { - f l [ r -  v - m ( r 2 - - r ) +  g l ( x 2 - - X ) ] }  

r -1) 
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To evaluate this formula, we apply part (b) of the Lemma, with 

hv(r/V) = (N /V-  r/V)(1 - N / V -  r/V + 1/V) 

h(x)= lira hv(x)= ( p -  x ) (1-  p -  x) 
V ~ x 3  

The result is 

Penrose 

p ~ = ( p - x * ) ( 1 - p - x * )  (92) 

When f i<  fl*(p), we have x* =p ,  and so p~.= 0; but when fi>~fl*(p), we 
have x*=p*(fi), and so p ~ = ( p - p * ) ( 1 - p - p * ) .  QED 

10. THE  O N E - B O D Y  R E D U C E D  D E N S I T Y  M A T R I X  

Instead of characterizing Einstein condensation in terms of the 
occupation of the zero state, we can (1~ use the one-body reduced density 
matrix, which may be defined as 

Dl(X, X')= Z l tr(b f bx)e ~I~ (93) 

To compute this, we note first that (since all sites are equivalent) Dl(X, x') 
takes only two different values, one for the diagonal elements Dx(x, x) and 
another for the off-diagonal elements Dl(x, x')xex.. For the diagonal 
elements we have 

Dl(x, x) = (probability of finding a particle at vertex x) 

=N/V (94) 

For the off-diagonal elements we use (88), (86), and (93) to obtain 

( N o ) = ( B + B ) = V  l ~ ~ 2 D l ( X , X '  ) 

x x, 

=v- l [VDl (x , x )+V(V-1 )Dt (x , x ' ) xgx  ,] (95) 

Solving for D~(x, x')x~,, using (94), and taking the thermodynamic limit, 
we find that in this limit the off-diagonal reduced density matrix elements 
are given by 

lim D~(x,x')x~,---l im ~_l((No)-v)=pc (96) 
N, V ~ cto N, V ~ c~ 

At low temperatures Pc is nonzero and so "off-diagonal long-range order" 
as defined by Yang (17) is present. 
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11. DISCUSSION 

It has been known for some time (see, for example, ref. 14) that mean- 
field theory is exact, in the appropriate limit, for the Curie-Weiss model, 
which is equivalent to a classical lattice gas on a complete graph. The pre- 
sent work extends this result to the quantum hard-core lattice gas. Indeed, 
apart from notation the free energy formula (1) is identical with the free 
energy in the Bragg-Williams mean-field theory of alloys. It is therefore 
only to be expected that the critical exponents of our model, in particular, 
the specific heat exponent, are the same as for mean-field theory. In the 
Bragg-Williams theory, the analogue of the quantity denoted here by 
p*(/3) is the density of one of two phases in equilibrium with one another 
below the critical temperature, but in our model p*(fl) does not have 
such a transparent physical interpretation. Indeed, for us the physically 
important density at low temperatures is not p*(/3), but the condensate 
density Pc. As shown in the corollary to Theorem 2, this quantity has the 
critical exponent 1, which is the generally accepted mean-field value. (6'7) 

The corresponding exponent for liquid helium-4 has not been 
measured directly, but according to Josephson, (8) this exponent, which he 
denotes by 2/3, is related to the exponent for the superfluid density by 

Ps oc ( T ~ -  T)  2~-"v' (97) 

where Ps is the superfluid density, T is the temperature, T~ is the critical 
temperature, and r/, v' are defined by 

C(r)  oc r - 1 - ~  when T =  T c (98) 

(correlation length) oc (T,. - T ) - v '  (99) 

where C(r)  is the two-point correlation function of the order parameter 
(local condensate density). Experiment (1~ shows that the exponent in (97) 
is about 2/3, and so, provided that q is small (the corresponding exponent 
for the three-dimensional Ising model is about 0.04), the exponent 2/3 for 
helium-4 should also be not far from 2/3. 

There is an alternative method for proving Theorems I and lI, based 
on the results of Fannes et aL ~4) The alternative method also shows 
explicitly how the symmetry of the high-temperature state is broken at low 
temperatures: in the extremal states of the infinite system the various lattice 
sites are independent and the state of any one of these lattice sites 
corresponds to a density matrix 

822/63/3-4-23 
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where the first row or column refers to the site's being occupied and the 
second to its being unoccupied. At low temperatures, for which Pc ~ 0, the 
symmetry is broken because each value for the phase factor e i~ gives a 
distinct state. 

The Bose gas with hard-core repulsion on any lattice or graph is 
equivalent (9) to an X Y  model and so our model is equivalent to an X Y  
model on a complete graph. The mean-field theory of the JfY model was 
worked out by Matsubara and Matsuda, (9/ who give a formula for the 
critical temperature equivalent to our (4), and by Zilsel, (18) who gives a free 
energy formula equivalent to (1) and a p - T diagram essentially the same 
as our Fig. 1. 

When the temperature is zero (/3= oe), Eq. (92) gives p(1 - p )  as the 
value of the condensate density. For  any other temperature the condensate 
density is less than this value. T6th (16) has pointed out that p(1 - p )  is also 
an upper bound on the condensate density for a quantum lattice gas at any 
temperature on any graph and with any interaction whatever, provided 
that the interaction has a hard core and that all the sites have the same 
ground-state occupation probability; this fact is proved by the same 
method as the corresponding zero-temperature result (11~ for hard-core 
systems in continuous space. 
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